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Abstract. We describe a non-Arrhenius mechanism for the slowing down of dynamics that is
inherent to the high dimensionality of the phase space. We show that such a mechanism is at
work both in a family of mean-field spin-glass models without any domain structure and in the
case of ferromagnetic domain growth. The marginality of spin-glass dynamics, as well as the
existence of a ‘quasi-equilibrium regime’ can be understood within this scenario. We discuss
the question of ergodicity in an out-of equilibrium situation.

1. Introduction

Many systems of physical interest are out of equilibrium throughout the observation times
after preparation. The fact that a system, rather than reaching the Gibbs–Boltzmann
equilibrium measure, remains in a regime of slow dynamics can be attributed to various
causes. A clear example is the case in which there are domains of different ordered phases
growing at the expense of each other, such as when a ferromagnet is quenched to the low-
temperature phase. Another rather different scenario is when the phase space has traps of
long lifetimes, which the system leaves without visiting again.

Spin-glasses (and also structural glasses) are known to have properties that depend on
the ‘age’ after the quench [1, 2], and hence the possibility that they are in equilibrium is
ruled out. Several explanations have been proposed to account for their slow dynamics,
based on domain growth ideas [3], on a phase space with traps [4] and on a percolation-like
picture in phase space [5, 6]. The latter two scenarios are low dimensional in the sense that
they work equally well in a low-dimensional (though infinite) phase space.

The purpose of this paper is to argue, with some examples, that just as equilibrium
thermodynamical properties such as the existence of macroscopic non-fluctuating quantities
are a direct consequence of the infinite dimensionality of phase space (irrespective of the
physical dimensionalityD), there are also in the out-of-equilibrium dynamics aspects that
are inherent to the geometry of infinite-dimensional (phase) spaces.

We shall first describe these rather generic geometric features, and then show explicitly
how they lead to slow dynamics, even in the absence of metastable states. We shall see that
they apply to both ferromagnetic domain growth and to a family of mean-field spin-glass
models which does not have any domain structure. In both cases we shall concentrate on
‘long but finite’ times: the limitN → ∞ (or V → ∞) is made before the limitt → ∞.
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Here we shall only deal with systems which have an underlying energy landscape,
leaving out systems that are defined solely by a dynamical rule.

In order to have a well defined landscape in which a deterministic dynamics takes
place, we shall restrict our discussion to zero or near-zero temperatures. We believe that the
mechanism we shall describe is also at work in the case of higher temperatures, possibly co-
operating with other specifically non-zero temperature mechanisms such as barrier crossing.
The three models we shall use as examples have the property that their dynamics at zero
and at low temperature are essentially the same.

The problem with extending our geometrical discussion to finite temperatures is that at
present we do not know exactly the geometry ofwhat we should look into (that is, short
of the whole Hilbert space of the Fokker–Planck equation). In this respect, it is normal to
have in mind afree-energy landscape in terms of variables representing the evolution of a
probability packet. Whatever the procedure for the construction of such a landscape, the
implicit assumption is that the dynamics isdeterministicin these variables (otherwise the
original energy landscape would be as good).

However, there seems to be discouraging evidence for this approach, at least for glassy
systems: it has been shown [7] that a set of trajectories that are forced to coincide up to any
given finite time, and are then subjected to different thermal noises, will eventually diverge
to distant places of the phase space, while with a deterministic approach one would conclude
that they evolve together. In other words, a probability packet that is out of equilibrium is
destroyed by the evolution.

We shall concentrate on systems with a smooth energy-density landscape with no
relevant infinite energy density configurations. Let us define the normalized square phase-
space distance between two configurationssai , sbi :

B(a, b) = 1

N

N∑
i=1

(sai − sbi )
2 (1)

or, for two fieldsφa(x), φb(x):

B(a, b) = 1

V

∫ L

0
dDx (φa(x)− φb(x))2 . (2)

The correlation function is introduced in the usual way,

B(a, b) = C(a, a)+ C(b, b)− 2C(a, b) . (3)

We shall say that a system has well separated energy minima ifB(a, b) between any two
minima is an O(1) quantity, or

C(a, b)

[C(a, a)C(b, b)]1/2
< 1 . (4)

In the case of non-zero temperature the corresponding question is whether the correlation
between magnetizations in two states is smaller than one:∑

i m
a
i m

b
i√∑

i (m
a
i )

2
√∑

i (m
b
i )

2
< 1 . (5)

Some examples of systems with well separated minima are the ferromagnet and
ferromagnetic Potts models in any dimension and mean-field spin-glasses with a finite
number of breakings. Instead, mean-field spin-glasses with infinitely many levels of replica-
symmetry breaking do not satisfy this condition. Our discussion is mainly directed at
systems of the first kind.
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Figure 1. Domain growth potentialV (φ).

We shall exemplify the geometrical properties we discuss here with three models. The
first one is a ferromagnetic domain growth problem (see [8] for a review). The energy is
of the Landau type

E(φ) =
∫

dDx
(

1
2(∇φ)2 + V (φ)

)
(6)

whereV has a double-well structure with minima atφ = ±1 (figure 1). We takeV (±1) = 0,
and consider a system of sideL and periodic boundary conditions. In order not to have
regions of phase space with infinite energy densities we shall assume that there is an
ultraviolet cut-off. The dynamics is gradient descent:

∂φ

∂t
= − δE

δφ(x)
= −∇2φ(x)− V ′(φ(x)) (7)

starting from a random configuration.
Secondly, we shall discuss the spherical version of the Sherrington–Kirkpatrick

model [9–11]

E(s) = − 1
2

∑
ij

Jij sisj

N∑
i=1

s2
i = N (8)

where theJij are quenched random Gaussian variables with zero mean and variance 1/
√
N .

This model shares some, but not all [11], of the properties of ‘true’ mean-field spin-glasses,
but has the advantage that it allows for a complete analytical description.

The third model we shall consider is a ‘true’ spin-glass, in that it has slow dynamics and
ageing effects, and its Gibbs measure is given by a (one-step) replica-symmetry breaking
Parisi solution. It is thep-spin version [12] of the preceding modelp > 2:

E(s) = −
∑

i1<i2<···<ip
Ji1,...ip si1 . . . sip

N∑
i=1

s2
i = N (9)

where theJi1,...ip are quenched random Gaussian variables with zero mean and variance
p!/2N(p−1). In the large-N limit one can assume that the sum runs over different indices.
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In these two last cases we also consider a Langevin dynamics

∂si

∂t
= −δE

δsi
− z(t)si + ηi (10)

wherez(t) is a Lagrange multiplier enforcing the spherical constraint, andηi(t) are random
uncorrelated white noises with variance 2T . We shall deal mostly with the zero-temperature
case.

Our strategy will be to show that what rather obviously happens in the first two models
also happens in a more hidden way in the third, and hence argue that such mechanisms are
also at work in glassy dynamics. This will allow us to understand some puzzling aspects
of the ageing regime in this kind of system, such as the existence of a ‘quasi-equilibrium’
(FDT) regime of times even in a well out of equilibrium situation, and the ubiquity of the
so-called ‘marginality condition’ which allows the use of pseudo-static methods to obtain
certain dynamical quantities.

The paper is organized as follows. In section 2 we discuss some geometric properties
of an infinite-dimensional phase space, and describe how they may lead to a long-time
out-of-equilibrium dynamics. In section 3 we show how these considerations apply to the
ferromagnetic domain-growth case. The Hessian in this case corresponds to a Schrödinger
problem of ‘quantum wires’. In section 4 we review some results of [11] for the spherical
Sherrington–Kirkpatrick model. This model is also very similar to the domain growth of the
O(N) ferromagnet. A complete study of the topology of phase space is extremely simple
for it, and in addition we can get a glimpse of the effect of non-zero temperature.

Section 5 contains the main results of this paper. There we study thep-spin spherical
model (p > 2), which is ‘really glassy’, in the sense that its dynamics has an ageing
regime with long term memory effects [13] qualitatively close to realistic spin-glasses. The
equations of motion are in the high temperature phaseexactly mode-coupling equations.
The Parisi ansatz for the replica solution has breaking of the replica symmetry [12] and the
phase space has exponentially many valleys [14, 15]. We shall rederive some results of the
analytical solution of [13] on the basis of the present geometrical scenario, and compare
them with the static approach.

2. Critical points, basins and borders

Borders. Let us start by describing the structure of the phase space of a system with several
valleys. First consider the ‘critical’ or ‘stationary’ points in which the gradient of the energy
vanishes. The nature of a critical point is given by the number of negative eigenvalues of
the energy Hessian, which we shall call the ‘index’I of the point. The minima (we assume
there are at least two) have index zero, the maxima have indexN , and the critical points
of index one are the saddle points connecting two minima. We shall consider the rather
general situation in which thereare critical points of every index. We shall denote the
‘index density’ i ≡ I/N , 0 6 i 6 1.

To each minimum is associated a basin of attraction, defined as the set of points that
will flow through gradient descent to it. Consider now the(N − 1)-dimensional border of a
basin, which we shall denote by∂1. There may be one or more such borders. Now, a point
that is strictly on a border will never leave the border (by definition!). Generically, the
trajectory will end in a minimum over∂1 of the energy. Such minima over∂1 are precisely
critical points of index one, the saddles separating two true minima.

Hence, we have that∂1 is itself divided into basins of attraction, one for each critical
point of index one in it. Now consider the(N − 2)-dimensional border of one such basin.
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We shall label it∂2. Again, a system starting in∂2 (the border of the border) will never
leave it. Repeating the argument for∂2, we find that it is divided into basins whose minima
are the critical points of index two. In this way we can iterate the argumentN times, and
define∂I , the border of the border of. . . (I times), on which the trajectory generically flows
to a saddle point of indexI .

All this description may seem rather baroque, given that most points are not on borders.
However, when we consider an infinite-dimensionalphasespace, the structure of borders
becomes relevant for the following reasons. A random starting point will be contained within
a basin. Now, since such a basin is anN -dimensional object, we know that generically
most of its volume is contained withinB ' 1/N of its border∂1 [16]. This in turn means
that forN = ∞ if the potential is smooth enough the system never leaves the vicinity of
∂1 in finite times.

The random point being almost on∂1, we can repeat the argument to find that it will
also be very close to a certain∂2, . . . etc. We can now iterate this argument afinite number
of times, to find that the system is near a sequence∂1, . . . , ∂I .

We can now understand the origin of the slowing down of the dynamics: a system
starting strictly on∂I will end up by being stuck in a critical point of indexI . A system
startingnear∂I will be almost, but not completely stuck, and it slows down. For long times
we have that the trajectory manages to distance itself from∂I corresponding to degrees of
‘bordism’ I that are smaller and smaller but stilli = O(1) never distancing itself from∂I
corresponding to finiteI . In other words, the neighbourhoods of the critical points ofi ' 0
are, for long but finite times, efficient in trapping the system. Figure 2 shows how this
would come about in a two-dimensional phase space: points starting near the borders have
trajectories that take a long time to reach the minimum (of course, the condition of starting
near the border is imposed in two dimensions, while it arises naturally in many).

What we have described is a non-Arrhenius mechanism for ageing which works even at
zero temperature, and which does not involve any sudden processes of barrier jumping. This
mechanism, as we shall see below, is at work in the case of domain growth; the important
question here is that it seems rather generic for systems with well separated minima, whether
we are able to identify a spatial structure for them or not.

Figure 2. A schematic representation of a basin in2D

phase space. The signs indicate the indices ‘I ’ of the
critical points (maxima are vertices and the minimum
is at the centre of the square). The trajectories starting
near an edge take longer to fall. The broken line
represents the ’border’ schematically.
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Hessian. At long times one knows that the gradient must be small (because the system has
slowed down), but is still non-zero so that we are not precisely in a critical point. Indeed,
at zero temperature:

|∇E|2 = −dE(t)

dt
→ 0 . (11)

If we now consider the matrix of second derivatives of the energy,

Hij = ∂2E

∂si∂sj
(12)

we know that in the neighbourhood of a critical point of indexI the Hessian hasI negative
eigenvalues. A natural assumption suggested by the scenario described above is that if we
follow a trajectory that starts near∂I the spectrum of the Hessian will be similar at every
time to that of a nearby critical point, reflecting the degree of ‘near bordism’ at that time.
This is easy to see in figure 2, a trajectory starting near the border will have typically one
positive and one negative eigenvalue, until it ‘unsticks’ from the border and it ends by
having two positive eigenvalues.

The dynamics at long times will be such that theH will have a distribution of
eigenvaluesλµ containingR(t) negative eigenvalues, withR(t) decreasing with time,
corresponding to a situation in which the landscape at timet is similar to the landscape
at a nearby critical point of indexI = R(t). The density of the eigenvalues of theH at
time t , ρt (λ) will then contain a bulk of positive eigenvalues, plus a tail extending down to
some small negative minimal eigenvalue. The integral over the tail of negative eigenvalues
is R(t). The precise manner in whichρt (λ) tends to its limitρ∞(λ) is model-dependent, we
shall describe them in detail below for the three models discussed in this paper. The main
features are, however, the same: a distribution over positiveλ that stabilizes quickly, plus
a tail that extends up to negative eigenvalues which tends to disappear slowly with time.

Let us see that the velocity vector points, for long times, in the directions of low (positive
and negative) eigenvalues of the Hessian. If there is slower than exponential decay of the
energy, we have that

(∇E)+H(∇E)
|∇E|2 = d2E

dt2

/
dE

dt
→ 0 . (13)

Denotingvµ the component of the velocity in the direction of the eigenvalueλµ of H, this
means that ∑

µ v
2
µλµ∑

µ v
2
µ

→ 0 . (14)

Hence, we have that at long times, the particle moves in a gorge with locally many
directions in which it is a minimum, plus a few almost flat directions with positive and
negative curvatures: the system is ‘critical’ or ‘marginal’ at all finite times. The gradient
is small, and is pointing along the almost-flat subspace. We have arrived at this picture
by arguing that the dynamics takes place along ridges, and we now find that remarkably,
in high dimensions, a ridge can also behave as a channel. It is important to remark that
the claim here is not that at long times there should be slow degrees of freedom (this is
obvious), but that the existence of such slow directions is a natural consequence of the
dominance of borders in high dimensionalities.
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Energy differences between critical points, speed of descent.Let us now review a few
results that will be useful in the discussion that will follow.

Given two critical points of indexI and I + 1, respectively, which are joined by a
gradient line (e.g. a minimum and a saddle), we want to estimate what the energy difference
of such a ‘step’ may be. Consider a ‘ladder’ of such steps, taking us from a minimum to a
saddle, from a saddle to a critical point of indexI = 2, and so on up to a maximum.

If the system does not have infinite energy density configurations, the total energy
climbed is O(N), in N steps. Hence, at most a finite number of such steps can be of O(N),
and there must be steps of O(1). This means that most of these steps are almost flat.

For D-dimensional systems with short-range interactions we can say more. By
considering a domain of a phase A growing against a domain of another phase B, one
finds that:

(i) If there is a minimum whose energy is O(N) above another minimum, the energy
of the barrier separating them is O(1) [17].

(ii) Between two minima there is at least one saddle (indexI = 1) that is at most
O(N1−1/D) in energy above them.

Let us now give an upper bound for the time of descent between two points. Consider
a point in phase spacesa, and another pointsb which is downhill fromsa along a gradient
line. Let their energy difference (energy density difference) be1Eab (1eab ≡ 1Eab/N ),
and distancedab = |sa − sb|.

We now ask ourselves what is the minimal possible time for descent froma to b. It is
easy to show that the time is minimal if the path joininga and b has a constant gradient
= 1Eab/dab. Hence we have:

ta→b > d2
ab

1Eab
= B(a, b)

1eab
. (15)

Consider now two minima and their associated saddle point (I = 1), and let each minimum
be well separated from their common saddleB(saddle,minimum) > 0. An immediate
consequence of (15) is that if the energy differences between barriers and minima scale with
the system size slower thanN , the time for descent from the neighbourhood of the saddle to
the neighbourhood of either minimum is infinite. This argument certainly holds for finite-
dimensional systems with short-range interactions, since for them1e(barrier,minimum) 6
O(N−1/D).

Furthermore, since as we have seen before the gradient lines joining most critical points
have energy differences of order smaller thanN , we find that if two such critical points are
well separated, the time of descent from neighbourhoods of each is again infinite.

Ergodicity. If the system has many states, ergodicity is broken in the sense that a single
realization of the dynamics will not visit in finite times all configurations of phase space
with a probability given by their Gibbs–Boltzmann weights.

However, the fact that in an out-of-equilibrium situation the motion takes place near
borders leads to surprises when we attempt to define an ‘ergodic component’ at a given
time. Let us discuss two possible definitions.

Suppose we call the ‘ergodic component at timet ’ the connected set of points that
include the configurations(t) and have an energy lower or equal thanE(t) [5], i.e. the set
of points to which the system can be driven without work.

Let us now argue that an ergodic component so defined includes at any finite time many,
and in systems with finite spatial dimensions,all minima. At time t , there are within the
ergodic component several points of indexI = 1, having various energies. Each timeE(t)



1936 J Kurchan and L Laloux

reaches the energy of one of these points, the constant-energy surface develops a separatrix
and there is a disconnection of a subset of the ergodic component.

It may happen that many (or even all) the critical points of index one are at an energy
of order smaller thanN above the minima. Indeed, this will always be the case with finite
spatial dimensions and short-range interactions. Now, the excess energyE(t)−E(t = ∞)

is of O(N) at any finite time. In that case the ergodic component never disconnects and it
includesall the minima at any finite timet : the dynamics is such that the system refuses
to break its ergodicity at finite times.

At non-zero temperature we can discuss ergodicity at a given time from a related but
different point of view by asking ourselves whether a configuration at a given timet is
doomed to fall in an assigned state, or it may change basins due to thermal fluctuations
at times> t . That is, we are asking whether the ‘target’ state is fully determined by the
configuration at timet .

We cannot answer this question in general, but in section 4 we will show in a particular
model that there is at any given finite time a non-zero probability of changing basin—and
this is long before the system has had time to cross barriers between minima. One can
suspect that this is quite general, given that at any finite time the system has descended
very little from the ridge separating basins (it is close to∂1) so the thermal fluctuations may
well make it jump across the ridge and head for a different state.

‘Quasi-equilibrium’ regime and marginality. A rather surprising feature that appears in spin
glasses is that if one observes the correlation and response functions at two long but not
very separated times, they depend on time differences and obey the fluctuation–dissipation
theorem (FDT), just as in a system in equilibrium—even if the system is visiting a region
of phase space to which it will never return.

This can be understood within the scenario described above: the fast relaxations are
dominated by the local directions with large second derivatives. The form ofρt (λ) for
large times determines the precise time dependence of these relaxations. The slow drift
phenomena are related to the motion along the almost flat subspace, i.e. the tail ofρ(λ)

for λ around zero. The fact that the ‘quasi-equilibrium’ correlations and response functions
depend on time differences reflects the fact that the form ofρt (λ) for λ well above zero
stabilizes quickly, the ‘channel walls’ in most directions preserve their form.

Another surprising question in mean-field spin-glass dynamics is the so-called
‘marginality condition’. In its original form [18], the marginality ‘principle’ stated that the
dynamical values of energy, susceptibility, and the so-called ‘anomaly’, are determined by
the requirement that the fast relaxations (in theFDT regime) be ‘critical’ or ‘marginal’, in the
sense that they follow power laws instead of exponentials. The dynamics considered there
was made manifestly out of equilibrium (though not ageing) by making the Hamiltonian
itself (slowly) time-dependent. Because in many models the dynamics in a true equilibrium
state is non-critical, the results so obtained differ from those at equilibrium.

It also turned out (although no general proof exists at the moment), that one can obtain
the large-time limit of some one-time quantities by solving a static problem and imposing
the solution to have marginal stability [18, 13]. The question seems very puzzling: why
should the system always choose to fall in a state that is marginal, refusing to see those that
are not? Within the present geometrical scenario, the question is quite clear: the dynamics
is by construction non-equilibrium, at least at the beginning, even if we always consider a
time-independent Hamiltonian. Then we argue that the system never achieves (even local)
equilibrium, it does not fallanywhere, but is confined near borders of the basins and the
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Hessian at long times contains a (decreasing) number of negative eigenvalues. In this sense
the dynamics is automatically marginal at all times, whatever the stability of the true minima.

If the minima are O(N) below the borders, we will then observe a finite energy-
density difference with respect to them at any finite time. This last thing cannot happen in
finite-dimensional systems, but it does happen in the mean-field model we shall discuss in
section 5. In that section we shall discuss this question in more detail.

The origin of a ‘quasi-equilibrium’ regime and the marginality of the long-time dynamics
are easy to understand in the case of ordinary domain growth: the response and the
correlation function at small time differences are dominated by the bulk of the domains,
which are locally (in real space) in equilibrium. The marginality of dynamics is given
by the zero modes associated with moving a domain wall. Again, the main point here is
that by considering the phase-space geometry we can understand why these things happen
in systems which either do not have a real space domain structure, or whose real space
structure we do not know.

3. Domain growth

Let us see how the description in the preceding section applies to the case of ferromagnetic
domain growth [8], equation (7). For definiteness we restrict ourselves to two dimensions.

We denote the size of the systemV = L2 and L → ∞. This case is somewhat
complicated by the fact that there is translational invariance, and hence the discussion has
to be done modulo translations.

The model has two zero-energy ground statesφ(x) = ±1, which we depict in figure 3(b)
in black and white, respectively. For long times, the system consists of domains of the two
types separated by sharp domain walls (figure 3(a)). The energy over the minima is at long
times proportional to the total length of all domain walls, which is at finite times O(L2).

Figure 3. (a) A domain configuration; (b) the
two statesφ = −1 andφ = +1; (c) a saddle
configuration.
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The phase-space square distance to the± minima is given by

B(φ,±) = 1

V

[∫
dDφ2(x)+ 1 ± 2

∫
dDx φ(x)

]
. (16)

At time t the typical domain size isr(t), and by hypothesis we are in the regimer(t) � L

(figure 3(a)), so thatB(φ,±) is ' 2 at all finite times. The system clearly remains far from
either minimum.

The saddles separating minima are easily constructed: they correspond (figure 3(c)) to
dividing the volume into two equal pieces of opposite phases, with straight interfaces. There
are two continua of such saddles, obtained by translation and 90◦ rotation. Their energy is
O(L), so that at any finite time the energy of the system is way above the energy required
to go from one basin to the other.

The Hessian matrix in the phase-space pointφ(x) is the operator:

H = δ2E

δφ(x)δφ(y)
= [−∇2

x + V ′′(φ(x))]δ(x − y) . (17)

The eigenvaluesλµ and eigenvectorsψµ of the Hessian evaluated inφ are then obtained
from the Schr̈odinger problem:

[−∇2
x + V ′′(φ(x))]ψµ(x) = λµψµ(x) (18)

with ‘potential energy’ given byV ′′(φ(x)), and periodic boundary conditions for the
wavefunctions. The Schrödinger potential is a well that follows the domain walls and
rapidly tends to∼V ′′(±1) away from them. Figure 4(b) shows the Schrödinger potential
across a domain wall.

In order to obtain the complete spectrum, let us first consider a single, straight wall.
Translational invariance tells us that

ψ0(x) = φ′(x) (19)

is a bound eigenvector of the Schrödinger potential withλ ∼ 0, which corresponds to
shifting the wall. In the saddle-point configuration of figure 3(c) (where two domain walls
are present), we have that theλ = 0 eigenvalue is preciselyφ′(x), which is anodd function
localized near the two domain walls. Since this function has a node, there must be a lower
eigenvector which is similarly localized buteven: its eigenvalue is then negative, and it
corresponds to moving the two domain walls in opposite directions.

We can now discuss the structure of the Hessian at large times. The Schrödinger
potential consists then of thin wells that follow the domain walls. The structure of bound
eigenvalues of such a problem can be appreciated easily by noting that it corresponds to a
problem of ‘quantum wires’ (a ‘wire’ being the region of each domain wall), a problem of
localization that has been extensively studied in the literature [19].

The eigenvectors ofH fall into three classes:
(i) All eigenvectors withλµ > V ′′(±1) are unbound. They are simply the bulk

oscillations of the magnetizations, and are little affected by the domain structure.
(ii) There are the bound eigenvectors which in the direction perpendicular to the walls

of the domains are essentially like (19) (figure 4(c)), and oscillate like eikw in the direction
w along the walls. Their eigenvalues are proportional tok2, and they correspond to the
massless spectrum of fluctuations (of length 1/k) of the domain walls.

(iii) Finally there are negative eigenvalues localized [19] in the more curved regions of
the domain wall, with eigenvaluesλ ∼ −1/r2, wherer is the local curvature of the domain
wall in the region of localization (these are the localized states of the quantum wire problem).
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Figure 4. (a) φ(x) across a domain wall; (b)
The Schr̈odinger potentialV ′′(φ) = m2(φ) of
the corresponding domain wall; (c) Schr̈odinger
wavefunctionψλ = φ′(x) with λ ∼ 0 across the
domain wall.

At any finite time there is then in addition to the ‘bulk’ of large eigenvalues (i), a
tail of small, positive (ii) and negative (iii) eigenvalues. Clearly, as time passes local
curvatures become smaller and the domain walls become more and more sparse, so
most negative eigenvalues tend to approach zero and simultaneously the distribution of
eigenvalues contains fewer and fewer eigenvalues smaller thanλµ < V ′′(±1).

The ‘velocity vector’∂φ/∂t is in real space concentrated along the regions of fastest vari-
ations ofφ, i.e. in functional space it mainly points in the direction of (ii) and especially (iii).

The fast response is dominated, at large times, by the eigenvaluesλµ > V ′′(±1), and
coincides with the one obtained at equilibrium.

4. Spherical SK model

The sphericalp = 2 model has been introduced in [9], where it was shown that its statics
has a low-temperature phase with two states. The replica solution does not have replica-
symmetry breaking. The long-time dynamics [10, 11] has two regimes of times:

(i) for t, t ′ → ∞ and t − t ′ finite the correlation and response functions are time-
translational invariant, and satisfyFDT:

C(t, t ′) = CFDT(t − t ′)

R(t, t ′) = RFDT(t − t ′) = 1

T

∂CFDT(t − t ′)
∂t ′

(20)
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with C(t, t) = 1. For larget − t ′, but still � t ,

CFDT ' qEA + A(t − t ′)−1/2 RFDT ∝ (t − t ′)−3/2 (21)

where qEA = 1 − T is the Edwards–Anderson parameter. At strictly zero temperature
qEA = 1, so that in order to see something of the decay of the correlation, and to check
FDT, in this regime we will have to go to a low but non-zero temperature.

(ii) The system is not, however in equilibrium at any finite time: In the regime of
large, comparable, times in whicht, t ′ → ∞ and 0< t ′/t < 1 the correlation function is a
non-homogeneous function oft ′/t , while FDT is violated (see [11]).

Let us see how the considerations of section 3 apply to this case. The energy of the
model, defined by the Hamiltonian (8), reads in the basissµ in which the matrixJij is
diagonal:

E = − 1
2

∑
µ

Jµs
2
µ (22)

with the spherical constraint∑
µ

s2
µ = N (23)

whereJµ are the eigenvalues ofJij , which for largeN are distributed with a semicircle law
with support(−2, 2) [20]. Let us denote bys1, s2, . . . , sN the directions associated with the
eigenvalues in decreasing order (J1 ' 2, . . . , JN ' −2).

The stationary points ofE, when restricted to the sphere, are the directions of the
eigenvectors. There are two minimasµ = ±√

Nδµ,1, two saddle points separating them
sµ = ±√

Nδµ,2, and in general two critical points of indexI : sµ = ±√
Nδµ,I . The energy

difference between the minima and the saddles is easily shown using the semicircle law to
be of O(N1/3).

The equation of motion in terms of these variables is, at zero temperature:

∂sµ

∂t
= (Jµ − z(t))sµ(t) . (24)

We assume that the initial configurations0 is uncorrelated with the potential, and hence in
the eigenbasis ofJij eachs0

µ is a random number of O(1). The solution to the equations of
motion then is

sµ(t) = s0
µ exp

[∫ t

0
(Jµ − z(τ )) dτ

]
(25)

where

z(t) =
∑
µ

Jµs
2
µ = −2e(t) < 2 ∀t

z(t) ' 2 − 3

4t
as t → ∞ .

(26)

From equations (25) and (26) one sees thats1(t) does not change sign and its absolute value
grows steadily. Hence, the two basins of attraction are the set of points:

s/s1 > 0 s/s1 < 0 . (27)

The border∂1 is then the set∂1 = {s/s1 = 0}. Repeating again the argument, we
conclude that∂1 is itself divided into two basins leading to the two saddles. The border
between these is∂2 = {s/s1 = 0, s2 = 0}. In general∂k = {s/s1 = 0, . . . , sk = 0}.
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The normalized squared distance to∂1 is B(∂1, s(t)) = s1(t)
2/N , and remains of

O(1/N) at all finite times. In general, this is true for the distance to∂I (I finite), given by

B(∂I , s(t)) = 1

N

I∑
k=1

sk(t)
2 . (28)

We now turn to the study of the Hessian. Because the system is spherically constrained,
we have to restrict it to the directions along the sphere. A direct way to see which is the
relevant operator is to consider the dynamics of two trajectories that are close to one another:
s(t) ands(t)+σ(t), with |σ| small. Using the equations of motion and the constraint, plus
the fact that

s(t) · σ(t) = 0 (29)

we have, in the original basis

∂σi

∂t
= −Hijσj − 1

N

∑
j

dsj
dt
siσj (30)

where

Hij = ∂2E

∂si∂sj
+ z(t)δij (31)

is the effective Hessian for a spherically constrained system. The last term in (30) serves
to impose the preservation of the constraint, and tends to zero with time.

For this model the Hessian reads

Hij = −Jij + z(t)δij . (32)

We note thatH is time-dependent (throughz), but its eigenbasis does not depend on time.
We now know the structure of eigenvalues of the Hessian for all times:ρt (λ) is a shifted

semicircle law with support in the interval [−2 + z(t), 2 + z(t)]. The distribution is, for
large times, a semicircle starting in

λmin(t) = − 3

4t
(33)

and extending up toλ ' 4. The number of negative eigenvalues goes as∼Nt−3/2. The
limiting form of the distribution,ρ∞(λ), is a semicircle with support in [0, 4].

Let us now discuss how the long-time structure of the Hessian is reflected in the response
and correlation functions. Consider the effect of a small kick on the system at timetw, in the
direction of the magnetic field of intensity1h and duration1t . It will shift the configuration
si(tw) to si(tw)+ σi(tw), whereσi(tw) = 1h1t . The response function at subsequent times
is the increase of magnetization due to the field, per unit of1h1t , i.e.

R(t, tw) = 1

1h1tN

∑
i

σi(t) =
∑

i σi(t)σi(tw)∑
j σj (tw)

2
. (34)

We can now solve equation (30), neglecting its last term, to get

σi(t) =
∑
j

T
[
e− ∫ t

tw
H(τ ) dτ

]
ij
σj (tw) (35)

whereT denotes time order (irrelevant in this case, since the eigenbasis does not evolve).
Leading to

R(t, tw) = 1∑
j σj (tw)

2

∑
ij

σi(tw)T
[
e− ∫ t

tw
H(τ ) dτ ]

ij
σj (tw) . (36)
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Because the eigenbasis of the Hessian is uncorrelated with the direction of the magnetic
field, this becomes, in the large-N limit:

R(t, tw) = 1

N
tr⊥ T

[
e− ∫ t

tw
H(τ ) dτ ]

= tr⊥
[
e−〈H〉t,tw (t−tw)] (37)

where the tr⊥ denotes the trace restricted to the directions tangential to the sphere, and we
have defined the time-averaged Hessian as

〈Hi,j 〉t,tw ≡ 1

t − tw

∫ t

tw

Hij (τ ) dτ . (38)

It is clear that in (37) the contribution of the tail of low eigenvalues of the averaged Hessian
is negligible for finite time separationst−tw � t , and that for these time separations we can
substitute the averaged Hessian by the asymptotic (semicircle) distributionρ∞(λ). Hence,
we find that the fact thatρt (λ) has a limit implies time homogeneity in this regime of times.
Furthermore, the fact thatρ∞(λ) ∝ λ1/2 for small λ (but large compared with 1/t) implies
thatR(t − tw) ∝ (t − tw)

−3/2.
For time separations oft − tw of the order oft , the exponential in (37) selects the tail

of lowest eigenvalues, and theFDT regime breaks down: the tail of almost flat directions of
H is responsible for the ‘ageing regime’t − tw = O(t).

For this simple model, the calculation can be carried out explicitly, using the asymptotic
form for H at long times:

〈Hij 〉t,tw (t − tw) = −Jij (t − tw)+
[∫ t

tw

z(τ ) dτ

]
δij

= [−Jij + 2δij ](t − tw)− 3

4
δij ln

t

tw
(39)

from which an expression for the ageing regime can be readily found.
Let us now turn to the ‘fast’ correlation function at small but non-zero temperature and

at two large but not very separated times. Because the motion along the flat directions
is slow, it can be neglected for short time differences. At the other extreme, one can
assume that the system is equilibrated in the ‘fast’ degrees of freedom corresponding to
large eigenvalues ofH. Since, as we have seen, in this regime of times it is only such
degrees of freedom that also contribute to the response function, we conclude thatFDT must
hold. The correlation function then reads

C(t, t ′) = 1 − T

∫ t

t ′
R(t, t ′′) dτ

= 1 − T tr⊥
∫ t

t ′
dt ′′

[
e− ∫ t

t ′′ H(τ ) dτ
]
. (40)

Sincet − t ′ is by assumption� t , we can neglect the variation ofH to get

C(t, t ′) = 1 − T tr⊥
{
H−1(t)

[
1 − e−H(t)(t−t ′)]}

' 1 − T
∑
µ

1 − e−λµ(t−t ′)

λµ
. (41)

We can now check that the assumptions we made above are consistent: fort − t ′ finite
and larget , the numerator in (40) acts as a lowλµ cut-off: the (few) positive and negative
λµ that are close to zero O(1/t) do not contribute. Ast − t ′ becomes comparable witht
the approximation (and hence the validity ofFDT) breaks down because on the one hand
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we can no longer assume the constancy ofH, and on the other hand the slow degrees of
freedom (λµ ∼ 0) start contributing and we cannot assume that they are equilibrated.

The inverse eigenvalue 1/λµ is the typical length of the fluctuations in the directionµ,
it is infinite if λ 6 0. The Edwards–Anderson parameter is

qEA = lim
t−t ′→∞

lim
t→∞C(t, t

′) . (42)

The quantity

aq ≡ 1 − qEA

T
(43)

precisely measures the average width of the channel, the order of the limit ensures (via the
numerator in (41)) a cut-off in the directions in which the system is unbound, i.e. it selects
the ‘walls’ of the channel against the longitudinal direction. Note that in this model there
is no discontinuous process of escape from a trap.

Finally, let us discuss the question of ergodicity breaking. As we have noted already, the
separation between minima is of the order of O(N1/3), while the energy above the minima
is, for large times,1E(t) ' 3

8t N , well above the barrier. In this model we can also ask
ourselves about ergodicity in the other sense of section 3: whether there is the possibility,
at non-zero temperature, of changing basin spontaneously.

We have seen that it is the sign ofs1 (in the eigenbasis ofJij ) which defines the basin.
The evolution ofs1 is, for finite temperatureT given by (see II.4 of [11])

s1(t) = s1(t = 0)e− ∫ t
0 dτ (z(τ )−2) dτ +

∫ t

0
dt ′′ e− ∫ t

t ′′ dτ (z(τ )−2)η(t ′′) . (44)

The first term is deterministic, while the second is a Gaussian random variable with variance:

2T
∫ t

0
dt ′′ e− ∫ t

t ′′ 2(z(τ )−2) dτ (45)

a quantity of order one. Hence, there is at any finite time the probability thats1(t) will
change sign (unless, of course, the system started well within a basin:s1(t = 0) = O(

√
N )

5. p-spin model

The sphericalp-spin model [12], unlike the previous two, has many (exponentially with
N ) [15] minima. The Parisi ansatz for the replica solution has a one-step replica-symmetry
breaking.

The long-time out-of-equilibrium dynamics [13] has, again, in the low-temperature
phase, two regimes of times:

(i) For t, t ′ → ∞ and t − t ′ finite the correlation and response functions are time-
translational invariant, and satisfyFDT. At zero temperatureand larget − t ′, but still � t ,
also for this model

CFDT ' qEA + A(t − t ′)−1/2 RFDT ∝ (t − t ′)−3/2 . (46)

The relaxation exponents change with temperature and are given in [21].
The dynamical Edwards–Anderson parameter (T ∼ 0)

1 − qEA

T
=

√
2

p(p − 1)
(47)
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as well as the asymptotic ‘threshold’ energy density

ethres = −
√

2(p − 1)

p
(48)

aredifferentfrom their corresponding Gibbs-measure counterparts. We shall re-derive them
from a geometrical point of view below.

(ii) For widely separated times, the correlation becomes smaller thanqEA, and is not
time-translational invariant. The response function in this regime also violatesFDT, and,
unlike the previous case, yields a long-time memory with ageing effects that are similar to
those experimentally observed in real spin-glasses.

Structure of minima. The system has many minima, ranging in energy density from the
ground stateeGibbs (as calculated in the replica calculation) up to a threshold energyethres

[13–15] (48). The corresponding Edwards–Anderson parameters of these states are given,
in terms of the energy density of each minimume, by [14]

1 − qEA

T
= 1

p − 1

{−e − (e2 − e2
thres)

1/2
}
. (49)

The asymptotic energy, as well as the dynamical Edwards–Anderson parameter, tend to
the values (48), (47) corresponding to the threshold states, thoughthe system never relaxes
into any of these[13].

Using the equation of motion and the spherical constraint, one has that the Lagrange
multiplier z(t) is related to the energy density by

z(t) = −pe(t) . (50)

The energy Hessian can be calculated by expanding up to second order around a
stationary point and using the spherical constraint, to get (cf equation (31))

Hij = ∂2E

∂si∂sj
+ z(t)δij . (51)

Using the homogeneity in the expression for the energy, we first note that the equation
of stationarity implies thatH has an eigenvector in the ‘radial’ directionsi of eigenvalue
−p(p − 1)z(t).

We can find the spectrum in the directions orthogonal to this one by using the ‘locator
expansion’ [22], or directly by noting that∂2E/∂si∂sj is a sum of many (∼Np−2) terms,
and hence assuming that in the directions orthogonal tos the couplings can be taken as
uncorrelated from the configurations in the large-N limit (this is indeed the assumption
in [22]).

The mean-squared element can be obtained from:[
∂2E

∂si∂sj

]2

=
[
p(p − 1)

p!

]2 ∑
i1,...,ip−2 6=i,j

∑
j1,...,jp−2 6=i,j

Ji1,...,ip−2Jj1,...,jp−2si1 · · · sip−2sj1 · · · sjp−2

=
[
p(p − 1)

p!

]2

Np−2

(
p!

2Np−1

)
(p − 2)!

p(p − 1)

2N
(52)

where we have used the variance of the couplings, and the factor(p − 2)! counts the
number of ways of matching the{ik} with the {jk}. The matrix of second derivatives is
then a random matrix whose distribution of eigenvalues is a semicircle law with support in
[−√

2p(p − 1),+√
2p(p − 1)], plus a projector in the direction ofs.
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Using equations (50)–(52) and (48) we find that the spectrum of the Hessianρe(λ) in
the direction tangential to the constraint is a shifted semicircle law with support in

p(ethres− e) < λ < −p(ethres+ e) λmin = p(ethres− e) . (53)

A direct calculation using

1 − qEA

T
=

∫
dλ
ρe(λ)

λ
(54)

yields back (49). A more complete confirmation of (53) can be obtained by making a
low-temperature expansion around a minimum and checking that using the form ofρe(λ)

one gets the same results as in the TAP approach of [14].
We now understand the origin of the threshold level: the ‘gap’ in the spectrum of

the Hessian becomes smaller as one considers states that are higher, until it disappears at
e = ethres. Above the threshold the gap is negative: the critical points are unstable and their
index increases with increasing energy.

Finally, we can estimate the energy difference between the critical points of indexI

and the highest threshold minima. Usingλmin from (53) and the semicircle law one easily
gets

I = N

∫ 0

λmin

dλ ρI (λ) ' N

∫ p(eI−ethres)

0
dλ λ1/2

I ∝ N(eI − ethres)
3/2 ⇒ EI − Ethres ∝ I 2/3N1/3 .

(55)

In particular, we have for the barriers separating threshold minima (I = 1):

EI=1 − Ethres ∼ N1/3 . (56)

Out-of-equilibrium dynamics. In order to study the long-time dynamics starting from a
random configuration, we start by considering the Hessian given by (30) and (31). The
calculation of thetime-dependentspectrum of the second derivatives of the energy is
obtained by making, as in the preceding section, the assumption of independence of the
configurations and couplings in the large-N limit. Repeating the calculation (51) for this
case, we find that the Hessian consists of a random matrix of elements with variance as in
(52) plus a shift term. The eigenvalue densityρt (λ) is then a semicircle law with support
in

p(ethres− e(t)) < λ < −p(ethres+ e(t)) λmin(t) = p(ethres− e(t)) . (57)

This assumption is confirmed numerically in figure 5, where we plot the integrated spectrum
of the Hessian for different times. In the inset we show the integrated spectrum of the matrix
of second derivatives of the energy (i.e. the spectrum ofH minus the shift) and compare
it with an integrated semicircle law.

We are now in a position to rederive some results for the out-of-equilibrium dynamics
of [13]: if we now claim, as in the preceding sections, that because of the dominance
of borders the dynamics is such that the Hessian has a (decreasing) number of negative
eigenvalues at all finite times, we reobtain the ‘marginality condition’:

lim
t→∞ e(t) = ethres. (58)

At this point it is important to remark that this last equation doesnot mean that the
system relaxes into a near-threshold state: at all finite times an infinite system has a Hessian
with an infinite number of directions in which the energy is a maximum. If at a given finite
time the system is close to a border∂I , we may ask how many different basins meet there,
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Figure 5. Integrated eigenvalue (λ/
√

3) distribution of the Hessian at 10 different times for
p = 3 andN = 200. Inset: the shifted distribution for all times and the analytical integrated
semicircle law.

i.e. to what extent the system is ‘almost undecided’. A study [23] of the random partitioning
of a high-dimensional space suggests that genericallyI + 1 basins meet at∂I—an infinite
quantity at finite times.

We have seen that the saddles separating threshold minima are typically O(N1/3) above
the threshold level, while the energy is at all finite times O(N) above this level. Again,
we confirm that at all finite times the constant-energy surface isnot disconnected into
components.

Up to now the system seems to behave dynamically in a very similar fashion to the
p = 2 model. An important difference appears when we consider the evolution of the
eigenbasis of the Hessian. Because the actual elements of the second derivative matrix now
depend on the time via the time dependence of the spins, we may expect that unlike the case
p = 2 the eigenbasis ofH also depends on time. Indeed (see figure 6) the overlap of the
eigenvectors at two different times (t, t ′ such thatC(t, t ′) ∼ 0.7) is very small. Although
the spectrum of the Hessian leads us to an image of a ‘channel’ whose characteristics change
slowly with time (as in the casep = 2), we now see that such a channel twists and turns
chaotically with time.

Let us now turn to the analysis of the ‘fast’ relaxations (the quasi-equilibrium regime).
We have seen in the preceding section that what is relevant for this regime is the spectrum
of the time-averaged Hessian (cf equations (37), (38) and (41)). Since for this problem
the eigenbasis of the Hessian turns, in principle we have to take care of the fact that the
spectrum of the time-averaged Hessian is not the same as the time average of the spectrum.

The spectrum of the averaged Hessian can still be obtained with the same assumptions,
but taking into account in (52) that the spins are evaluated at two different times. This will
introduce a factor∼C(t, t ′)p−2. However, since here we are interested in the regime of
times for whichC(t, t ′) > qEA, and we are restricting ourselves tonear-zero temperatures,
the effect of the variations of the configuration (and hence the ‘turning’ and the time ordering
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Figure 6. The statistics of
overlaps between the eigenvectors
of the Hessian, at two times
([U †(t ′)U(t)]i,j versusi), for p = 3
andN = 200.

of the Hessian) can be neglected. Following a calculation as in the preceding section, we
reobtain (46).

Hence, we see that the fact that the steepest ‘walls’ of the ‘channel’ preserve their form
(even if the channel twists) explains the validity of the fluctuation–dissipation theorem and
time-translational invariance in the quasi-equilibrium regime.

6. Conclusions

In this paper we have argued that the relaxational dynamics of a system in the thermodynamic
limit has characteristics that lead naturally to slowing down and are a direct consequence
of the infinite-dimensionality of phase space.

The peculiarities of infinite-dimensional geometry may be overlooked if one seeks
inspiration from a low-dimensional phase-space sketch: such a sketch for a ferromagnet
would consist of a double well and would lead us to conclude that after a rapid quench
the ferromagnet ‘falls’ into one of the states, though we know that this does not happen in
finite times.

In the case of a ferromagnet, we are kept from jumping to wrong conclusions by a picture
of snapshots of the domain structure at different times—a naturally infinite-dimensional
description of a configuration. At present it is not known if every form of slow dynamics
present in nature is just some sophisticated version of domain growth (cf the long-lasting
controversy with spin-glasses): hence the interest of trying to explore the consequences of
infinite-dimensionality of phase space directly, without invoking real-space structures.

In order to isolate these phase-space geometric causes of slowing down (which do not
involve rapid jumps) from barrier-crossing mechanisms, we have deliberately concentrated
on systems which have a non-Arrhenius behaviour at near-zero temperatures. At the other
extreme, there is a picture by Bouchaud [4] of jumps between phase space traps which is
at the same time simple and yields excellent results for spin-glasses.

Whichever turns out to be the complete description of the problem of slow dynamics, it
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will have to take into account all elements, blending continuous and discontinuous trapping
together in a single picture—possibly with each correlation scale dominated by one type of
mechanism.

Let us finally remark that though it seems important to have a phase-space intuition of
what happens with a system that ages, it is not a substitute for dynamical computation: by
the time one introduces all the necessary elements that go into the definition of a ‘barrier’,
one has taken into account all the paths leading to it and their respective probabilities:
precisely what one computes in a dynamical calculation. Moreover, if as we have argued
here the saddle points are also relevant, in order to know their structure we are faced with a
Morse-theory problem that is again best studied [24] using methods that are closely related
to Langevin dynamics.
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